On zero divisor graph of unique product monoid rings over Noetherian reversible ring
نویسندگان
چکیده مقاله:
Let $R$ be an associative ring with identity and $Z^*(R)$ be its set of non-zero zero divisors. The zero-divisor graph of $R$, denoted by $Gamma(R)$, is the graph whose vertices are the non-zero zero-divisors of $R$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. In this paper, we bring some results about undirected zero-divisor graph of a monoid ring over reversible right (or left) Noetherian ring $R$. We essentially classify the diameter-structure of this graph and show that $0leq mbox{diam}(Gamma(R))leq mbox{diam}(Gamma(R[M]))leq 3$. Moreover, we give a characterization for the possible diam$(Gamma(R))$ and diam$(Gamma(R[M]))$, when $R$ is a reversible Noetherian ring and $M$ is a u.p.-monoid. Also, we study relations between the girth of $Gamma(R)$ and that of $Gamma(R[M])$.
منابع مشابه
on zero divisor graph of unique product monoid rings over noetherian reversible ring
let $r$ be an associative ring with identity and $z^*(r)$ be its set of non-zero zero divisors. the zero-divisor graph of $r$, denoted by $gamma(r)$, is the graph whose vertices are the non-zero zero-divisors of $r$, and two distinct vertices $r$ and $s$ are adjacent if and only if $rs=0$ or $sr=0$. in this paper, we bring some results about undirected zero-divisor graph of a monoid ring ov...
متن کاملZero-Divisor Graph of Triangular Matrix Rings over Commutative Rings
Let R be a noncommutative ring. The zero-divisor graph of R, denoted by Γ(R), is the (directed) graph with vertices Z(R)∗ = Z(R)− {0}, the set of nonzero zero-divisors of R, and for distinct x, y ∈ Z(R)∗, there is an edge x → y if and only if xy = 0. In this paper we investigate the zero-divisor graph of triangular matrix rings over commutative rings. Mathematics Subject Classification: 16S70; ...
متن کاملA Note on Zero Divisor Graph Over Rings
In this article we discuss the graphs of the sets of zero-divisors of a ring. Now let R be a ring. Let G be a graph with elements of R as vertices such that two non-zero elements a, b ∈ R are adjacent if ab = ba = 0. We examine such a graph and try to find out when such a graph is planar and when is it complete etc. Mathematics Subject Classification: Primary 16-xx, 05-xx; Secondary 05C50
متن کاملOn the Zero-divisor Cayley Graph of a Finite Commutative Ring
Let R be a fnite commutative ring and N(R) be the set of non unit elements of R. The non unit graph of R, denoted by Gamma(R), is the graph obtained by setting all the elements of N(R) to be the vertices and defning distinct vertices x and y to be adjacent if and only if x - yin N(R). In this paper, the basic properties of Gamma(R) are investigated and some characterization results regarding co...
متن کاملTHE ZERO-DIVISOR GRAPH OF A MODULE
Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, sayΓ(RM), such that when M=R, Γ(RM) coincide with the zero-divisor graph of R. Many well-known results by D.F. Anderson and P.S. Livingston have been generalized for Γ(RM). We Will show that Γ(RM) is connected withdiam Γ(RM)≤ 3 and if Γ(RM) contains a cycle, then Γ(RM)≤4. We will also show tha...
متن کاملOn zero-divisor graphs of quotient rings and complemented zero-divisor graphs
For an arbitrary ring $R$, the zero-divisor graph of $R$, denoted by $Gamma (R)$, is an undirected simple graph that its vertices are all nonzero zero-divisors of $R$ in which any two vertices $x$ and $y$ are adjacent if and only if either $xy=0$ or $yx=0$. It is well-known that for any commutative ring $R$, $Gamma (R) cong Gamma (T(R))$ where $T(R)$ is the (total) quotient ring of $R$. In this...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 4 شماره 1
صفحات 95- 114
تاریخ انتشار 2016-02-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023